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DENSITY AND OPTICAL PROPERTIES
OF SPARCS PLUMES

By

William A. Brown
John B. Kumer
Charles E. Cooper, Jr.*

Lockheed Palo Alto Research Laboratory
and*Lockheed Huntsville Research Center

SUMMARY

Propellant gases emitted by attitude control systems such as SPARCS

(Solar Pointing Aerobee Rocket Control System) may interfere with experi-

ments aboard the payloads. This report surveys the optical properties of

seven actual and potential gases emitted by propellant systems (CF4, N
2
H4,

NH3, N
2
, C02, Ar, and He) and provides a compilation of absorption coeffi-

cients from 1A to 50 Aim and a summary of fluorescent spectra and efficiencies.

Since Freon-14 (CF.) is of primary importance to SPARCS, an experimental

search for the fluorescent spectrum of CF4 was performed by exciting the

gas with 920A UV photons. The result was compared with an electron impact

induced spectrum of CF4, and conclusions drawn about the nature of the

radiating species. A detailed study of the CF4 flow fields and plume densi-

ties for typical SPARCS controlled payloads was made using gas dynamic codes

which included the effects of vehicle shading and condensation. The impor-

tance of the optical properties of CF4 plumes was investigated and it is

concluded that absorption is negligible but fluoresence may be significant

in some cases.



I. INTRODUCTION

Propellant gases emitted by attitude control jets on SPARCS or other

control devices for rockets or satellites may interfere with on-board

experiments. The purpose of the investigations reported here was to esti-

mate the importance of this potential interference, and to provide data

upon which a quantitative assessment of interference can be made. The

SPARCS system is designed to provide attitude control for Aerobee and other

rockets by a combination of solar pointing and magnetic roll stabilization,

thus avoiding the use of gyros.

Attitude control is provided by eight pulsed thrust nozzles. The

length and frequency of the pulses determines the net torque on the rocket

payload. The centerlines of the SPARCS thrust nozzles l:e in planes perpen-

dicular to the roll axis of the roll axis of the rocket and most of the gas

emitted is directed away from the sides of the vehicle. A study of the den-

sity distribution (Section III) reveals that some gas appears ahead of the

payload. The implications of this for optical experiments are discussed in

Section IV. Gases can interfere with on-board experiments in three ways.

One of these, direct interaction with optical surfaces or other instrument

components is not discussed here. The absorption of radiation and fluorescence

due to illumination of the gases by sunlight is the subject of Sections II

and IV.



II. OPTICAL PROPERTIES OF GASES

Gases emitted by attitude control systems have two potential means

of interfering with optical experiments on the payload. They can absorb

light in specific spectral intervals and they can scatter light or

fluoresce. Information on the molecular and atomic properties of

seven gases are included. These are CF4 (freon-14), N
2
H4 (hydrazine),

NH
3
(ammonia), C02 (carbon dioxide), Ar (argon), N2 (nitrogen), and He

(helium).

1. Absorption Coefficients

Absorption coefficient data for gases of present and potential future

importance for pointing control systems are presented in this section and

Appendix A. These data were compiled from a number of sources listed in

the references and cited in Appendix A. This section treats the absorption

coefficient data of the individual molecules. The absorption of the gas

clouds output by the SPARCS pointing control systems is discussed in

Section IV, where estimates of gas density are combined with absorption

coefficient data.

The absorption coefficient data presented for the molecules considered

in this study contain both continuous and discrete spectra. There is a

fundamental difference in the interpretation of the data depending upon

whether the spectra are discrete or continuous. All the atoms and molecules

have a continuous absorption spectrum inthe x-ray region at wavelengths of

from one to several hundred angstroms, interrupted by a number of discrete

edges. In the vacuum UV region of the spectrum from the mid hundreds to
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about two thousand angstroms there are both continuua and discrete line

and band spectra. The molecules and atoms are essentially transparent in

the visible and again show discrete absorption spectra in the near and far

infrared. For each of the gases considered in this study, a chart or graph

was prepared spanning the wavelength region from one angstrom to fifty mi-

crons (1A = 10-8 cm, 1 micron = 10-4 cm). In cases where the absorption

coefficient is continuous it is plotted as a function of wavelength, but

in cases where discrete lines and bands exist, it is inconvenient

and sometimes misleading to plot absorption coefficient. Supplementary

graphs and tables are used to display details of the absorption coefficient

data in selected spectral intervals.

The absorption coefficient is given in units of cm' 1 atm.1 , usually

abbreviated simply as cm , and is simply related to the absorption cross

section, a cm2 , at a particular frequency by the factor 2.687 x 101 9-parti-

cles/cm atm, Loschmidt's number. In the case of a discrete transition in

an atom or molecule, the quantity that is usually measured is the integral

of the absorption coefficient over a wavelength interval which :includes all

or part of the line or band in question. This integral is a constant for

each molecule depending on internal quantum mechanical properties of the

atom or molecule. The oscillator strength or f-number of a discrete trans-

ition is related to the integral of the absorption cross section, a, by:

2
o a dv = re f (1)mc

where ie2/mc = 0.0266 cm2/sec, and v is the frequency in Hz, where Xv'= c.



To illustrate the problem of presenting absorption coefficient data

for lines or bands, consider the resonance absorption line of the helium

atom at 584A. The dimensionless f-number for this transition is 0.26

corresponding to an Einstein spontaneous transition probability of 18 x 108

transitions per second. The absorption cross section for this line is

given by unfolding the integral of equation 1. To do this, let a be the

value of the function C = a(v) at the line center. It depends on the shape

of the absorption line, which depends in turn on the particle velocity or

kinetic temperature and the pressure, or where these are small, the life-

time of the excited state of the atom. Two cases are worked out as

examples. Consider the helium atom in free space at zero temperature.

The width of the absorption line at 584j will be determined solely by its

natural line width which is, in frequency units, 1.8 x 109 Hz. Replacing

the left-hand side of equation 1 by the product of this frequency interval

-12 2
and an average cross section yields ao = 4 x 10 cm . Now consider a

gas of helium atoms at 200 degrees Kelvin. The shape of the absorption

line will be dominated by Doppler broadening which is the result of random

kinetic motion of the atoms. The full Doppler line width at half maximum

at 2000 K for the helium 584A line is 2.5 x 1010 Hz so that an estimate of

-13 2
the absorption cross section at line center for this case is 3 x 10 cm ,

an order of magnitude smaller than the cross section for an atom at zero

kinetic temperature. In both cases the integral of the absorption coefficient

or cross section over frequency or wavelength is the same and only the shape

and height of the function o(v) differs.

Figures 1 through 7 give absorption coefficient data for the

gases studied over the spectral range from soft x-ray to far infrared.
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Additional details on absorption coefficients for most of the gases

studied are contained in Appendix A, along with reference citations for

the original data.

2. Fluorescence

The plume or gas cloud may be both in the field of view of the

experiment and illuminated by radiation from the sun or earth. Solar

radiation dominates in the visible, uv, and near infrared. While at wave-

lengths greater than 5 microns the earth provides greatest irradiance at

rocket or satellite altitudes.

Molecules in the gas cloud may absorb radiation in the visible or uv

and re-emit in both visible and infrared. For example, freon, CF4, absorbs

vacuum uv radiation in a broad band near 900 Angstroms and emits fluorescent

radiation at wavelengths < 3000A.

In the infrared, scattering of the earth's or the payload's thermal

radiation may interfere with instruments designed to detect such radiation.

The fluorescence spectra of the molecules considered in this study are

discussed in Appendix B. The importance of CF4 as a propellant and the

lack of detailed fluorescence data on this molecule led to a requirement

for experimental work which is described in Appendix C. This gives, for

the first time, the fluorescence spectrum of CF4 when excited by photons

13



of wavelength near 900A. Some questions have been answered by the experi-

mental investigations completed thus far on fluorescence of CF
4
, but some

new problems have arisen. Most important among these is the possibility

that CF
4
may fluoresce when irradiated with photons of wavelength shorter

than 600A. Cook and Ching (ref. 1) did not use wavelengths shorter than

600A and so could not provide information on either absorption or fluores-

cence in the region <600A. The electron excitation experiments showed

that low energy electrons excite the same fluorescence as that excited by

900A photons. It also showed that electrons of energy greater than 22 eV

excite, with high efficiency, fluorescence at 1600A in addition to the

large amounts of fluorescence between 1850 and 3000A. Whether photons

of wavelength less than 600A also excite these fluorescent signals is not

known. Experimental work at shorter wavelengths would resolve this

question.

In addition to the detailed discussion of fluorescence in Appendix

B, some examples are given here. The fluorescent spectrum of CF
4

is shown

in Figure 8. The significant part of the spectrum lies between 2100 and

3100A. Section. IV gives estimates of the intensity of this spectrum in a

sunlight illuminated gas plume.

The spectrum of sunlight illuminated hydrazine products was observed

from Mariner 7 with a high resolution spectrometer. Figure 9 from ref. 2

gives this spectrum from 1200 to 4300A. The martian atmosphere itself

provides an example of a fluorescent spectrum of sunlight on C02 and

Figures 10 and 11 from ref. 3 are examples.

14
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III. DENSITY DISTRIBUTION OF SPARdS PLUMES

An analysis of the exhaust plume density profiles of the SPARCS

motors has been conducted for the following six possible operating condi-

tions:

Combustion Chamber Combustion Chamber %CF4 %N
2

Pressure (psia) Temperature (OR)

*25.0 526.0 lO0 0

25.0 526.0 go90 l

25.0 526.0 75 25

*800.0 526.0 00o 0

800.0 526.o 90 10

800.0 526.0 75 25

* Primary Operating Modes

SPARCS uses a 10:1 area ratio motor with a 15° half angle and a throat dia-

meter of .044 in. Figure 12 shows the motor arrangement, motor numbering

system and the primary area of interest in determining the density profiles.

The analysis was conducted for flight conditions corresponding to those of

free space. The source flow plume and plume impingement computer programs

were used to calculate the steady state continuum and free molecular flow

field properties with payload shading being taken into account (refs. 4 and

5). The possibility of condensation in the exhaust plumes was examined by

use of the multi-specie heterogeneous condensation computer program (ref. 6).

A value of the Knudson number (Kn) equaling .8 was used as the criterion

for determining the point at which the flow became free molecular. In

the free molecular region, it was assumed that the molecules traveled along

straight lines at a constant temperature and velocity. The source flow
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plume program calculated the plume density using the assumption that the

density is inversely proportional to the streamtube cross-sectional area.

Vehicle shading effects were determined by using the source flow

impingement program which considers the vehicle size and location relative

to the motor nozzle. Vector relationships were then used to determine

whether the flow streamline would intersect the body and be reflected

out into space or whether the flow would miss the body and proceed into the

region directly in front of the vehicle.

The extremely low temperatures and pressures which occur in the plume

when it expands in deep space makes it necessary to ascertain whether con-

densation would take place in the flow and if so to determine how this

would affect the plume density level. This calculation was performed by

using the heterogeneous multi-specie condensation program which assumes

one-dimensional flow and determines if condensation takes place. Equations

describing nucleation were derived following the classical approach for

each specie in the system, using the specie properties at the flow tempera-

ture and its partial pressure found by Dalton's law. The equations describing

the droplet growth (taking place after nucleation has created a droplet of

sufficient size) were derived by allowing molecules of any specie which has

crossed its vapor pressure curve to stick onto droplets present in the

system. Mass accumulation is accounted for through a mass growth equation.

The relationship between flow and condensate is through the mixture density

which is used in the continuity and momentum equations. Mixture density is

a function of mass fraction of condensate and gas density. This relationship

20



allows the equation of state to be solved in terms of either gas density

or mixture density. The energy exchange between the gas and condensate is

accounted for in the flow energy equation through the condensate latent

heat term and the thermal energy difference between condensate and flow.

The computations showed that no condensation was predicted for any of the

cases investigated. The Pc = 800 psia case with pure CF
4
did predict

a small amount of nucleation beginning at a point 0.178 inches downstream

of the nozzle throat but the droplets are predicted to never reach the

critical drop radius. As a consequence, they evaporate as rapidly as they

are formed. Also, after having performed these calculations, it can be

stated that no condensation would be expected for a CF4 /N2 mixture with a

5260 R chamber temperature for any chamber pressure less than 800 psia.

Computations of CF4 plume densities were made for the payload geo-

metry shown in Fig. 12. There are three distinct nozzle locations; roll

(1 and 3), yaw (4 and 6) and shaded yaw (2 and 5). The latter lie astern

of a block containing two roll nozzles and their flow is shaded from the

front of the payload. For each of the three nozzle types, plume densities

are plotted in planes containing the rocket axis at angles, a, listed in

Table 1.

Figures 13-24 provide data for pure CF4 flows, with chamber pressure

25 psi and temperature 5250 R (Rankine) (292°K).

In order to assess the effects of possible changes in the SPARCS

RCS system the following section is presented. Variations of the RCS

21



Table 1

Figure Numbers of Density Plots

Angle Plane of Plot Makes with Axis of Nozzle 2

e = 400 700 1000 130°

Nozzle 6

Unshaded Yaw

Nozzle 5

Shaded Yaw

Nozzle 3(up)

Roll

Fig. 13

14

15

16

17

18

19

20

21

22 12a

23

24

Densities are in units of slugs/ft3, where 10
-

10 slug/ft3 = 6.5 x

1011 molecules/cm3 for CF4.

93"

55"

fI _______________________________________ 
· .

Nozzle 6 (Typ. 2 places) | Nozzle 3 (Typ. 4 places) 

- IN
Region of Interest /

.6

Nozzle

2, 5
4, 6
1, 3

Type

Shaded Yaw
Unshaded Yaw
Roll

2 5

Fig. 12 Schematic showing positions of propulsion nozzles
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240 /J

Unshaded Yaw

200

0
0

4 1 6 0 _ _ _ _ _ _ _ _ _

0

120
0,

0

0 40O 80 120 160 200 240

Radial Distance Outboard from the Payload Centerline, inches

Fig. 12a SPARCS Reaction Control System Plume Density Contcurs as a Function of
Axial and Radial Dista-ice from the Surface of the Vehicle.
(Unshaded Yaw, 0 - 90 deg; Pc=25 psia; Tc= 525° R)
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Fig. 13 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Unshaded
Yaw, 0 = 40 deg; Pc = 25.0 psia; T = 525 0 R)
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Fig. 14 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Shaded Yaw
Motors, 0 = 40 deg; P = 25.0 psia; Tc = 525 0 R)
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240

e =40
Roll Motors

X 200

0

0 I 2 I5 x0- 11 s lug/ft 3

0 160
10

a)

120
4-

80
-4

./ I SPARCS
0 Payload

40

0 4080120160o 20 °-2
0 40 80 120 160 200 240

Radial Distance Outboard from the Payload Centerline, R (in.)

Fig. 15 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Roll Motors,
a = 40 deg; P = 25.0 psia; T = 5250 R)40de; c c
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Unsnaded yaw

X 200 z

0
4 J 3
o 5 x -10 slug/ft3

0

, / -10

120

-4

80

40

Fig. 16 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Unshaded

Yaw, 6= 70 deg; P = 25.0 psia; T = 5250 R)
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Fig. 17 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Shaded Yaw
Motors, 0 = 70 deg; Pc = 25.0 psia; T = 5250 R)c ~~c
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9 = 700

Roll Motors

240

160) [

o 
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40 80

o 0 I x 110I 0 _
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Radial Distance Outboard from the Payload Centerline, R (in.)

40

010

0 40 80 120 160 200 240

Radial Distance Outboard from the Payload Centerline, R (in.)

Fig. 18 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Roll Motors,
8 = 70 deg; Pc = 25.0 psia; T = 525°R)
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80
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SPARCS
m Payload 5 x 10
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0
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Fig. 19 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Unshaded
Yaw, 0 = 100 deg; P = 25.0 psia; T = 5250 R)C c
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Fig. 20 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Shaded Yaw
Motors, 0 = 100 deg; P = 25.0 psia; Tc = 525 0 R)
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Fig. 21 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Roll Motors,
e = 100 deg; P = 25.0 psia; T = 525 0 R)
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Fig. 22 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Unshaded
Yaw, 0 =130 deg; Pc = 25.0 psia; T = 5250 R)
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Fig. 23 SPARCS Reaction Control System Plume Density Contours as a Function
of Axial and Radial Distance from the Surface of the Vehicle (Shaded Yaw
Motors, 0 = 130 deg; P = 25.0 psia; T = 5250 R)
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system chamber pressure, working fluid molecular weight, nozzle size,

thrust transients encountered during buildup or decay, throat radius of

curvature variation and nozzle divergence angle variation will be described.

This discussion is limited to non-condensing, non-reacting flows.

o Chamber Pressure Variation

When a rocket motor is fired in deep space the resulting exhaust

plume is referred to as an underexpanded plume. When the flow comes out

of the nozzle, it tries to expand sufficiently to match the ambient

pressure which is essentially zero in deep space. As this expansion occurs

the Mach number of the flow increases and the plume boundary grows larger.

As shown in ref. 7, the relationship between the angle the plume boundary

makes with the nozzle axis and the Mach number is:

v = +1 tan-1 ('-1) -tan
-

1 M 1

where v is the plume expansion angle, M is the Mach number of the flow at

the plume boundary and y is the ratio of specific heats of the propellant.

(See ref. 8 for y data). As the Mach number approaches infinity the

preceding equation becomes:

V ma ( ( - 1) X 90o

From this one can see that a finite maximum plume expansion angle will

occur and it is dependent only on the ratio of specific heats of the flow.

When the plume satisfies this condition, the effect of changing the RCS

system chamber pressure will be to vary the propellant massflow rate and

the RCS thrust in direct proportion to the pressure change. Thus, if the
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chamber pressure is doubled the nozzle thrust and the propellant flowrate

will double. The plume density contours will remain in the same form and

location as before but the magnitude of the density associated with that

contour would also double.

o Molecular Weight Variation

The effect of changing the propellant molecular weight will make it-

self felt by changing the y of the exhaust flow. Thus, by going to a

lower molecular weight gas or gas mixture with the resulting increased y

the plume boundary and internal contours will be compressed. The amount

of compression of the internal contours requires a complex calculation that

would have to be performed for each case of interest. Also increasing the

y will increase the propellant mass flow rate and the thrust of the RCS

system as described by the following equations.

P A
Po t 2 )~ -1

and for a perfect gas:

F = P2 A2 (1 + yM2 ) - P1 Al (1 + y¥)

where

P = chamber pressure

A
t
= nozzle throat area

T = chamber temperature
o

R = universal gas constant

F = RCS system thrust
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( )l = nozzle throat conditions

( )2 = nozzle exit conditions

o Nozzle Size Variation

Varying the size of an axisymmetric nozzle while maintaining the

same contour variation will change the system mass flow and thrust by

throat new) where r is the nozzle throat radius. The shape of the

throat old

plume contours will remain the same, however, the location of the contours

will be adjusted according to the above ratio to the first power.

o Thrust Buildup or Thrust Decay

During the transients corresponding to thrust buildup or decay the

following phenomena will occur. Once supersonic flow is achieved, the

plume density contours will establish themselves at the same location they

would have at full thrust, however, the density levels would be decreased

corresponding to the percent of full thrust propellant mass flow at the

time being considered. Pump fed liquid engines can experience an "overshoot"

in propellant flow rate and thrust during the startup transient, but the

pressure fed SPARCS system will not encounter this.

o Throat Radius of Curvature and Nozzle Divergence Angle Variation

Throat radius variation and nozzle divergence angle variation can

make itself felt in two ways. One, if the radius of curvature is large

compared to the throat radius and the nozzle divergence angle is small

the nozzle boundary layer can build up sufficiently to effectively change

the nozzle contours. The effect would be to concentrate more of the
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exhaust mass near the motor centerline and shift the lines of constant pro-

perties downstream as the effective Meit is decreased. The thrust level

will drop slightly because the internal friction losses are increased.

Next, if the throat radius of curvature is small and the nozzle diver-

gence angle is large, then the flow will try to expand to follow the

rapidly enlarging nozzle contour and may separate from the wall. The magni-

tude of these values is empirically determined and is dependent on the type

of propellants being used, the level of Pc and Tc, and the actual size of

the nozzle. When separation occurs, the flow is governed by a pseudo nozzle

contour which it follows and becomes analytically unpredictable. Thus,

using too big or too small throat radius of curvature is to be avoided.

o Exhaust Plume Shielding

If it is determined that the exhaust plume interference effects on

the SPARCS solar sensors seriously degrades the system's performance, the

plume can be totally shielded from the area ahead of the payload. The

dimension of the shields required for the yaw and roll motors are shown

in Figure 25. The shields can be within a fraction of an inch of the

nozzles. Their dimensions are not critical.

Column densities of CF
4

plumes in the region ahead of the payload

were obtained by calculating the integral of the density along lines

parallel to the vehicle axis at a number of points. The results are

given in Table 2, in units of slugs/ft
2
(10

R
slugs/ft

2
= 1.075 x 1 0 ll

molecules/cm
2
for CF4). Figure 26 gives approximate contours of equal
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column density for the sum of one roll motor and one unshaded yaw motor

firing simultaneously, where the orientation of the motor plumes is shown

by the arrows. The shaded yaw motors do not contribute to these integrals.

Table 2

Column Densities Ahead of Payload

Type of Motor

Roll Motor

Unshaded Yaw

Unshaded Yaw

R inches

7.124

5.625

7.124

5.625

7.124

5.625

7.124

5.625

7.124

7.124

4.61 x

2.35 x

2.56 x

6.98 x

1.29 x

5.92 x

4.31 x

1.96 x

1.15 x

5.79 x

Slugs/ft2

1 -12

10

1 - 12

10- 1 1

1012

10-12

1012

1012

1- 1 2

IV. ABSORPTION AND FLUORESCENCE OF CF4 PLUMES

The optical effects of the CF4 plumies from SPARCS can be computed

by combining the density data of Section III with the absorption and

fluorescence data given in Section II and Appendices A, B and C. Some

sample calculations are given here.

Absorption of radiation by CF4 ahead of the payload is a maximum at

780A where the absorption coefficient K = 1550 cm-l atm (Fig. 27, Appen-

dix A). This corresponds to an absorption cross section a = 5.76 x 10- 1 7 cm2
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The column density, nc, of CF
4

for Pc = 25 psi ahead of the payload is

about 27 x 10- 1 2 slugs/ft2 or 2.7 x 1012 molecules/cm2 , (Figure 26) near the

edge of the payload where the gas density is highest. It follows that the

transmission, I/Io = exp E- nco] = 0.99985. where I
o is the incident light

flux at 780A and I is the flux reaching the top of the payload. This is

essentially unity and absorption loss is thus negligible ahead of the

payload, for even this extreme case. For the early portion of the flight

when de-spin is occurring and the nozzle chamber pressure Pc = 800 psi,

scaling up the density by a factor of 32 the light transmission is 0.995,

and absorption is still negligible.

Fluorescence of CF
4
plumes when irradiated by sunlight can be computed

using the density and fluorescence efficiency data. Consider the plume

gases ahead of the payload. The fluorescent signal from this gas is

g.1 pd x /AX. Here g = 2.6 x 10- 7 photons/sec. molecule is the fluorescent

g factor from Table 4 Appendix B; the density integral is at most 2.7 x 1012

molecules/cm2 over those portions of the near the contours of greatest

density in Figure 26; the wavelength interval over which CF
4

fluoresces,

AX = lOOOA as found in Figure 8 and the experiment report in Appendix C.

Thus the fluorescent signal is 700 photons/sec. cm 2A emitted in all

directions, or, dividing by 4r, 55.5 photons/sec. cm - steradian in the

wavelength interval between 2100 to 3100A.

The importance of this fluorescent signal can only be assessed by

comparing it with signals from astronomical targets for present or future

Freon controlled payloads. The uv spectrum of the planet Mars was
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observed reported by Barth et. al. (ref. 3) and a copy of this data is

shown in Figure 11. The ordinate is in units of Raylights per angstrom

and a typical emission feature produces about 200 R/A or 16 x 106

photons/sec. cm2 A. A Freon controlled instrument near Mars would thus

not be troubled by the CF
4

fluorescent signal computed above. On the other

hand if Mars were observed from near the earth's orbit the situation is

different. In this case the rocket borne telescope would see the entire

planet but at a distance of at least 0.5 AU. The planetary signal at the

rocket would be:

S=I. a.

Here I = A x 10 photons/sec. cm 2A. steradian

the emission of a typical spectral feature

a 0.75 x 10
8
cm

2
= area of Martian disc

O = 1.8 x 10-23 steradian = solid angle subtended by telescope

with 1000 cm entrance aperture at 0.5 astronomical unit.

Thus S = 210 photons/sec *A in a typical band.

The fluorescent signal due to excitation of CF
4

by sunlight is

SF = IF . b . Q

Here IF = 55.5 photons/sec. cm
2

A. steradian emitted by portions

of the CF
4
plumes

2
b '- 100 cm2 = approximate area of top of payload where density

of CF4 is appreciable (see Figure 26)

= 10-2 steradian = solid angle subtended by 1000 cm2 tele-

scope 10 feet (304 cm) from the source
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The result is SF - 55 photons/sec-A. Thus in this case the CF
4

fluorescence

is comparable to the planetary signal.
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APPENDIX A

Detailed Absorption Coefficient Data

Freon, CF4

Figure 1 summarizes the absorption coefficient data for freon. In

the ten to two hundred A spectral region, the absorption coefficient data

was obtained from Henke et al. (Ref. 9). The ordinate for this graph is

in units of cm- 1 atm 1 . Between 600A and about 1000l the absorption co-

efficient includes both continuum and discrete bands whose structure is

indicated crudely in Figure 1 and shown in more detail in Figure 27 from

data of Cook and Ching (Ref. 1). Between 950A and about six microns the

gas is essentially transparent. Beyond seven microns there are a number

of infrared absorption bands. Figure 1 shows the location of these bands.

Figure 28 displays the absorption structure of the 7.9, and 16 micron

bands. These were obtained from Edgell and Moynihan (Ref. 10).

No absorption coefficient data is available between 200 and 600k.

Figure 1 shows a possible curve for this region, which may be in error by

more than a factor of two.
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Hydrazine, N2H4

The absorption of the hydrazine molecule is summarized in Figure 2.

Data for the lOA to 200A interval were obtained from Henke (Ref. 9). From

200 to 1200A no data are available and a tentative absorption coefficient

curve is sketched in. Between 1200 and 2000A absorption coefficient

measurements were made by Schurgers and Welge (Ref. 11). Their data are

shown in the inset in Figure 2. There is additional UV absorption of

hydrazine with intensity maxima at 2326, 2320, 2276, 2215, 2225k with

continuous absorption beginning at wavelengths shorter than 2200A. This

was reported by Imanishi (Ref. 12). Infrared absorption of hydrazine has

been studied by Giguere and Liu (Ref. 13). Their results are shown in

Figure 29, where prominent bands are observed at 3 microns, 6.2 microns

and a broad band centered at 10.4 microns. Absorption coefficients are

-1
provided at the peaks of the strong bands. At 3 microns K =.0.27 cm

at 6.2 microns K = 0.3 cm 1 , and at the peak of the 10.4 micron band

K = 1.15 cm . These values of the peak absorption coefficient apply only

to the pressure and temperature at which the data were taken and do not

represent the values attainable under the conditions of lower temperature

and pressure.
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Nitrogen, N

The absorption spectrum of nitrogen has been studied by a number

of investigators. In the x-ray region, Figure 3 shows the characteristic

K-edge of nitrogen of 30A. At longer wavelengths the absorption coeffic-

ient rises to a peak near 800A. Figure 3 does not attempt to show the

detail of the highly structured absorption bands of N2 in the vacuum UV.

This is shown in Figures 30, 31 and 32 from Cook and Ching, (Ref. 14). At

wavelengths above 980A the absorption essentially vanishes except for the

weak Lyman-Birge-Hopfield bands in the 1200 to 1900A region and the

Vegard-Kaplan bands at slightly longer UV wavelengths. In the visible

and infrared there is no absorption.

Additional information of the WUV absorption of nitrogen is provided

by Huffman, Tanaka and Larrabee (Ref. 15) for the 580 to lOO1 region.

Absorption of the nitrogen Lyman-Birge-Hopfield bands was measured by

Ching, Cook, and Becker (Ref. 16). Their results for integrated

intensities are given below. An estimate of peak absorption coefficient

at strong lines in each of the bands was made by assuming each band

consists of 20 lines with Doppler contour. Dividing the integrated band

intensity by 20 Doppler widths yields the peak absorption coefficients

given in the table and indicated in Figure 3.
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Lyman-Birge-Hopfield System

BandoStreigth Wavelength On Av) Peak Absgrptioi
v'v" cm- atm" Angstroms vD Coeff.(cm atm )

0-0 32 1450.12 2.64 12
1-0 71 1415.92 2.71 26
2-0 98 1383.82 2.77 35
3-0 112 1353.65 2.83 40
4-0 120 1325.26 2.89 42
5-0 93 1298.5 2.95 32
6-0 83 1273.24 3.01 28
7-0 48 1249.3 3.07 16
8-0 36 1226.6 3.12 12
9-0 22 1205.3 3.18 7

v' and v" are vibrational quantum numbers of upper and lower state.

AVD = Doppler width of typical line.D
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Ammonia, NH3

The absorption of ammonia is given in Figure 4. X-ray data comes

from Henke (Ref. 9). In the vacuum UV region data was obtained from Cook

and Ching (Ref. 14) and Watanabe (Ref. 17). The x-ray data shows the

characteristic K-edge of nitrogen at 30A. At longer wavelengths it rises

to a peak at about 800A. Detail in this spectral region is provided by

Figure 33, adapted from Nicolet (Ref. 18). The UV absorption bands of

ammonia in the llOO1100 to 2200A region are given in Figure 34,(Watanabe

Ref. 17).

There are three important infrared bands of ammonia; at 3, 6, and 10

microns. Relative strength of these bands is indicated in Figure 4 and

some of the detailed structure is shown in Figure 35 from Ref. 22.

There is apparently no absorption by ammonia between 2200A and 3 microns.
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Carbon Dioxide, C02

The absorption spectrum of C02 is represented in Figure 5. Below

lOOA it is dominated by continuous absorption interrupted by the K-edges

of the carbon and oxygen atoms at 43.7A and 23.34, respectively. Between

200 and 400A no data is available and a tentative sketch is provided. In

the vacuum UV Figure 5 only crudely indicates the complexity of the con-

tinuous and band spectra. The continuous absorption from 400 to 600A

observed by Sun and Weissler (Ref. 19) is plotted in Figure 36, along with

the beginning of the band spectrum near 700A from Cook and Ching (Ref. 14).

Figure 37 continues the data of Cook and Ching to 1OOOA. In this figure

the solid line represents the total absorption and the dashed curves are

the proposed heights of the continuua underlying the band spectrum between

700 and 850A. Figures 38 and 39 from Inn, Watanabe and Zelikoff (Ref. 20)

show details of the spectrum between 1050A and 1800A. The weak absorption

from 1800 to 2200A is shown in Figure 40 from Ogawa (Ref. 21). From 2200A

to the near infrared carbon dioxide is transparent.

The prominent infrared absorption bands are illustrated in Figure 41

from Pierson, Fletcher and Gantz (Ref. 22). The shorter wavelength bands

are shown as they appear at a pressure of 900 torr (mm Hg), while the broad

15 micron band is plotted as it appears at 70 torr. Figure 42 gives a

detailed transmission curve for the CO
2
4.26 micron band which appears as

a single line in the low resolution data of Figure 41. Figure 42 is from

Barrow (Ref. 23).
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The integrated intensities of the absorption bands of carbon dioxide

in the infrared are derived from Penner (Ref. 24) and listed below.

60

Integrated Intensity

Wavelength Microns cm
-
2 atm

-

1

1.96 0.426

2.0 1.01

2.06 0.272

2.69 42.3

2.77 28.5

4.26 2706.

15.0 171.

4.81 0.1

5.17 0.08



0O

U)

.rl
44
6< a
a

0 O

0
tQ

0
CM

, .I;61



CU
0

o

0
0

or1

d)

4-i
Po

C)

_ )

to

(,_V43) M

62



O J15

10

5

150 1200 1250 1300 13-!0 "M VW
WAVELENGTH

10,000 , I 
3000_

CO2z

1000 -

o 100 -
30

10

1050 1075 1100 1125 1150 1175 1200
WAVELENGTH

Figure 38 UV absorption coefficient of C02

63

C



I

0
L). P

dO

WAVE LENGTH

U

.02
17i

Figure 39

T60O 1780
WAVELENGTH (A)

UV absorption coefficient of CO2

A. J.} , .



OU

I

x

4

1114

UV absorption coefficient of CO2Figure 40



100

,C Ps 900 TORR P - ITORR r'

C2 40- C02

, , , I 20a , a I a l I , I. X
2 4 6 8 10 12

X (MICRONS)

Figure 41 Infrared bands of carbon dioxide

4.237 4.310

0(

Z'z
4
I.-

14

X (MICRONS)

Figure 42 Transmission in 4.26 micron band of C02

66



Arron

Thl aLb,;orption of the monotomi.e ra:;, argon, while lackingV tlhe

intricate structure of molecular bands, possesses considerable structure

due to the presence of atomic lines in the vacuum UV. The data of Henke

(Ref. 9) in Figure 6 shows the K- and L-edges at 3.87k and 38A. The

region between 38A and 600A is covered by data from Hudson and Kieffer's

(Ref. 25) compilation. Figure 43 gives Cook and Ching's results for the

600 to 800A spectral region showing the sharp change in absorption at the

ionization limit 787A, (Ref. 14). Detailed structure at wavelengths just

short of the ionization limit is shown in Figure 44, from Huffman, Tanaka

and Larrabee (Ref. 26). These broad lines are due to transitions to states

lying above the ionization limit of the atom. These states then decay

quickly without radiation to an argon ion and a free electron.

A list of the wavelengths and oscillator strengths of the absorption

lines of the argon atom is given below, using data of Wiese, Smith and

Miles (Ref. 27).

Wavelength f-Value

876.06A 0.093

866.80 0.106

1066.66 0.061

1048.22- 0.254

879.95 0.0268

869.75 0.0119
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Heliwn

Absorption in helium is confined to wavelengths below the photo-

ionization limit at 504A, except for the resonance lines at wavelengths

up to 584A. Because of the extreme variation in absorption coefficient

between 1l and 504-, Figure 8 contains a plot of K/X vs. X. Data were

obtained from Henke (Ref. 9) and Samson (Ref. 28).

Wavelengths and oscillator strengths for the prominent resonance

absorption lines of the helium atom are listed below, as obtained from

Weise, et. al., (Ref. 29).

Wavelength f-Value

584.334 0.2762

537.030 0.0734

522.213 0.0302

515.617 0.0153

512.098 0.00oo848

509.998 0.00593

508.643 0.00399

507.718 0.00275

etc. to the ionization limit
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APPENDIX B

Fluorescence Mechanisms and Data

The molecules in the SPARCS propellant plumes will be exposed to sun-

light and earthshine causing them to emit fluorescent radiation which may

degrade onboard optical experiments, especially broad band detectors

focusing on weak stellar light sources. The fluorescence is generally dis-

tributed among discrete molecular band systems, atomic lines, and continua.

The bulk of the UV and visible fluorescence of CO2 for example is contained

in five emission band systems. These are the A - X and B - X systems of

CO in the visible and near UV, the a - x and A - X systems of CO and the
2

B - X system of CO+ in the far UV and VUV. The C0
2
fluorescence comes

from excited states produced by photo-ionization and photo-dissociation.

Six important fluorescence mechanisms are listed below. M refers to

a propellant gas molecule and z and y refer to photo-dissociation products.

An asterisk on a symbol indicates that the corresponding molecule, ion, or

atom is in an excited state. The mechanisms are

(2) hv + M - M* - M + hv' resonance fluorescence

(3) hv + M - MX+ + e - M+ + hv' + e photo ionization fluorescence

(4) hv + M - M (zy*)* - z + y* - z + y + hv' photo dissociation fluorescence

(5) hv + z - Z* - z + hv'
resonance fluorescence of fragments,

(6) h+ M+- M + M +h'(6) hv + *+ *M + hv' ions, and ionized fragments+ .t+ .*+
(7) hv + z Z z + hv'

For each of these six mechanisms it is convenient to define a quantity
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gi for each band system or line such that the intensity I of fluorescent

radiation incident on a detector viewing along a cm2 column containing a

number N of molecules is given by

(8) 4Ir = giN

The subscript indicates which of the six production mechanisms above is

-2
responsible for the fluorescence. The units of N are molecules cm and,

-1 -2 -1
following the usual conventions, those of I are photons sec cm sterad

for UV and visible light or watts cm-2 sterad-
1
for IR light. The units of

g then are photons sec- molecules1 for UV and visible light and watts

-l
molecule for IR light. For example, the resonance fluorescence gi factor

-22 -lfor the CO2 band system near 15.4p is 1.8 x 10 watts molecule so that
2
12 -2

for N = 10 molecules cm the intensity in this band is given by

1 -11 -2 -l
I = (h) glN = 1.45 x 10 watts cm sterad

- 1

The initial step in mechanisms (2) through (7) is a photon absorption

process thus g is given by

2

(9) gl = rdX ai(X)Fx e_ f XTF=~ mX Mc i

Here rrF is the total irradiance (due to earth and sun) in units of photons

-1 -2 -2 -l
sec cm Hertz 1 for UV and visible radiation and watts cm-2 Hertz

- 1
for

IR radiation and where ai(X) is the cross section in units cm
- 2

for a

photon of wavelength X to induce reaction i. rFX may be written as the sum

of the irradiance due to earth nF~ and sun TnF and g then may be rewritten

s e
as the sum g = g + g

with

gs = dX a(X) nFx
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and

e ¶dX o(C) F

in this paper nF3 always refers to the solar flux evaluated at the earth's

distance from the sun, one astronomical unit. Hence numerical values of

g stated anywhere in this paper apply to space vehicles very near the

-2
earth's orbit and must be corrected by the factor r with r the distance

from space vehicle to sun measured in astronomical units if the vehicle is

located elsewhere in the solar system. The ge found in this text may

similarly be corrected for distance from the earth. Let d designate the

distance of the space vehicle from the center of the earth in units of

earth radii then g is given as a function of d by

d

Numerical values of ge listed anywhere in this text refer to d = 1.

The approximate form of equation 9

2
tTe

gi e fm nF

applies when TnF is reasonably constant over regions for which ai(X) = 0.

This is always the case for the resonance fluorescence process (2). f. is
1

the oscillator strength for the initial upwards electronic radiative trans-

ition. Resonance fluorescence g1 factors are given in Table 3 for the

important IR bands of all the propellant gases. The oscillator strength

data were taken from the compilation of Penner (Ref. 24). The g factors

are given for the case where the molecules are illuminated by both the earth

and the sun and for the case where they are illuminated by just the earth
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(night time). Earth shine provides the most illumination for wavelengths

longward of about 5t1 while sun shine is dominant for wavelengths shortward

of 5t. The solar flux was assumed to be that of a 60000 K black body,

properly diluted to account for its (l/r)2 decrease in intensity on arrival

at the earth and the earth shine was taken from The Satellite Environment

Handbook (Ref. 30). N2 H4 has not been included in Table 3 since it is dis-

sociated by propellant motor operation into 251% NH3, 46% H2 and 29% N2

(Pearce et al., (Ref. 2).

Next consider process (3). A well known example is

(10) hv + N2(X Eg) + N (B2 Z) + e

followed by

N2 (B2 E) - N+ (X2 E) + hv'

which leads to fluorescence at 39141 , 4234A, and 35846, corresponding to the

(0-0), 0-1) and (1-0) bands of the N
2
B - X system. The g2 factor for this

process is (Ref. 31)

g2(N2, B - X) 1.0 x 108 sec 1 molecule
- 1

4 -2 -l
so the intensity in photons sec cm sterad in the B - X system of

+ 1 12 -2.
N2 for N = 10 cm is

I(N2 B - X) = +W g2(N2, B-X) N = .8 x 103 photons sec-1 cm sterad

The CO A-X Cameron bands provide an example of mechanism 3. These

bands are a prominent feature in the Martian dayglow. Barth (Ref. 3)

reports a cm column excitation rate of 20 kR* which represents a large

1 kR = kiloRaylei-h = 109 photons cm sec- when referring to column 2

excitation rates; an equivalent definition is 1 kR = 10Y photons cm
sec- 1 (sterad/4t)' when referring to the apparent brightness of an ex-
tended source.
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fraction of the solar flux incident on the Martian atmosphere that is

energetic enough (X • 1028A) to dissociate CO2 into CO(a3it). From these

data one may estimate an upper limit on g3(CO, a-x) if one assumes the en-

tire Martian CO a-x dayglow (Barth et al., ref. 3) is due to the process

(11) hv + C -2 0 + CO(a 3)

the result is

(12) g
3
(CO,a-x) < 5 x 10- 7 sec-1

so for N = 10 2 CO
2
molecules in a cm2 column along the detector viewing

direction the fluorescent intensity in the CO a-x band system is

(13) 4nI(CO,a-x) <_ g
3
(CO,a-x) N = 5 x 105 photons.cm . sec

Some examples of processes (4) through (6) are as follows

(14) hv + H(2 ) -H( 2p) h hv' + H(2S); X 1216A.

The resonance scattering of solar Ly-a emission by hydrogen, a disso-

ciation product of NH
3
and N2H4

(15) hv + N ( 
2

u ) hv + N2 (2 4g), x 3914A.(15) hv + (2 N~ B ) + N2 (X2 E'), X

The resonance fluorescence of sunlight by N2

(16) hv + C0+ (X Z+ ) CO+ (B2 L+) - hv' + CO(X2 Z+), X - 1150.

The resonance fluorescence of sunlight by CO+, an ionized fragment of

C02 ·

The population of fragments, ions and fragment ions produced from parent

gas clouds via reactions (3) and (4) will initially increase linearly with

75



respect to time measured from the inception of a particular pulse cloud.

If the g factor for resonance fluorescence of these products in a given band

is much larger than for the excitation of these product bands via reactions

(5) or (6) there will come a time TR when the radiation via resonance

fluorescence of parent gas ions or dissociation fragments will equal that

produced by photoionization or dissociation of the parent gas itself. Take

the case of the N2 B-X band system for example. Radiation is produced in

this band system via mechanism (4) at the rate

4irI3(N, B-X) = g3 (N , B-X)N(N2 )

where N(N2) is the number of N
2
molecules in a line of sight cm column and

it is produced via mechanism (6) at the rate

4iI (N+, B-X) = g5 (N , B-X)N(N+)

but in the absence of any recombination mechanism N(N2) is related to N(N2)

by

N(N+) t r N(N2)

we -T -1
where r 3 x 10

-
7 see deduced from the data reported by Hinteregger et al.

(ref. 32) is the probability sec
-

l that an N2 molecule will be ionized when

exposed to solar radiation and where t is the time elapsed from cloud inception.

Mie time TR when the N2 B-X radiation 4 vI
5
produced by resonance fluoresence

of sunlight by N2 is equal to that produced by photoionization of N2 to the

N2(B), 4nI3 , is given by

g3(N2, B-X) TR r N(N2 ) = g5(N , B-X) N(N2 )

or

76



R gs(N , B-X)/r g3(N2, B-X)

and g3 (N+, B-X) = .05 sec (Hunten, 1971) so that

TR = .67 sec

so in deep space where the propellant gas cloud moves along with the

vehicle mechanism (5) will be important.

Not surprisingly, the bulk of the sunlit UV and visible fluorescence

data obtained to date pertains to gases that comprise planetary atmospheres.

Thus, N
2
, H and He have been studied in the context of the earth's dayglow

(Hunten, ref. 31). Observations of the Martian dayglow (Barth et al., ref.

3) have led to correlated laboratory studies of CO2 fluorescence, figures(45-

49). The spectrum of a simulated Jovian atmosphere was obtained on the

Mariner 6 and 7 mission by viewing the 'sunlit dissociation products' of

N2H
4
in deep space (Pearce et al., ref. 2). The N

2
H4 dissociated into 25%

NH3, 46% H2, and 29% N2. The spectrum is shown in figure (9). It gives

more of a qualitative than quantitative picture of the fluorescence of

dissociated N2H4 in sunlight since it is not clear how much of the spectrum

comes from mechanisms (3) and (4) as opposed to mechanisms (5) through (7)

hence the nature of the spectrum might change considerably over a given time

interval. It is evident too that the operation of a hypothetical pointing

control motor on board Mariners 6 and 7 utilizing N2 H4 as a propellant gas

during the recording of the Martian dayglow spectra may have confused the
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interpretation of these spectra. If the number of N
2

ions in a cm2 column

along the detector line of sight were 108 (not unreasonable in deep space),

then the intensity at 3914A due to resonance scattering by N 2 would be com-

parable to the CO A-X emission at this wavelength and if this were not2

corrected for it would lead to the erroneous conclusion that appreciable

nitrogen exists in the Martian atmosphere.

Some information on sunlit UV and visible fluorescence of the gases

N
2
, He, H, C02, NH

3
, and H

2
has been obtained by the study of planetary

atmospheres, parallel laboratory studies, and the study of simulated atmos-

pheres. CF4, one of the most important gases in the SPARCS program, is not

an important constituent of any known planetary atmosphere and its fluorescent

properties were relatively unknown until now. Studies by Cook and Ching

(ref. 1) showed that it does fluoresce when illuminated by light of wavelength

near 910A.

The resultant radiation is shortward of 3000A and its spectrum is given

in fig. (8). Similar studies to obtain more accurate g factors for the other

gases would be useful not only from the point of view of the SPARCS project,

but also from that of the physics of planetary atmospheres as pointed out

above. Table 4 lists all the known UV and visible fluorescent band systems

or lines of propellant gas molecules that may be important. The g factors

are given or estimated when possible. They are evaluated at the distance

of the earth from the sun, but may be corrected by the factor r2 as described

above for other positions in the solar system. Earthshine does not contri-

bute to the g factors for UV and visible radiation. A description of the
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estimation procedure and pertinent references are given below for each g

factor along with comment when possible on its accuracy. Table 5 lists

the g factors of important propellant gas fragments, ions and ionized

fragments.

The g factors listed in Table 4 and 5 are for the most part rough

estimates (usually accurate within a factor of 2 or better) or upper limits.

One may use these to estimate the fluorescent background that a given pro-

pellant gas may create in an interesting wavelength region.

The most important fluorescent radiation from CF4 comes from photo-

dissociation products. This is the case for C02 also. The Martian dayglow

data shows that the metastable system A3v - XE of CO produced by solar

photodissociation of CO2 accounts for about 70% of the entire solar-induced

fluorescent spectrum of CO
2.

One would never predict this on the basis of

Cook and Ching's (ref. 14) C02 fluorescent data because the quenching of the

photodissociation-produced metastable CO (A3n) state masked the production

of this important C02 fluorescent radiation.

A description of the estimation procedure and the pertinent references

by which the g factors listed in Table 4 were obtained are given here. Cook

and Ching (ref. 1) report that radiation of wavelength 870A • X • 9500O

incident on CF4 produces a fluorescent radiation of wavelength X' • 3000A.

From their data and from the solar flux data of Hinteregger et al. (ref. 32)

one may estimate an upper limit on the g factor for production of this fluores-

cent radiation. There may be some additional CF4 fluorescence due to radiative
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decay of relatively long lived metastable photodissociation products.

This could not be observed in the experiment of Cook and Ching (ref. 1)

since the metastable if present would be collisionally deactivated by

the walls rather than radiate due to the relatively long lifetime of meta-

stable against radiative decay. The results obtained for C02 by Cook and

Ching (ref. 14) give no hint for example that the dominant fluorescent

3
radiation of CO2 is the CO a 3i - X'Z Cameron band system, which originates

from the photodissociation production of metastable CO(a 3it). Cross

sections aB(X) and sA(X) as a function of wavelength for the photoioniza-

+2 + av
tion excitation of the CO2 BEU and A iu states are given by Bahr et al.

(ref. 34). g is given by (equation 9 in the text)

g =[dX c(X) iFtf

so one may easily obtain gB and gA for the reactions

hv+ C2 CO2 (B ) + e

hv + CO2 - CO (A2 it) + e

The g factors for the other important fluorescent photo reactions

of CO
2
that are listed in Table 4 were estimated to within a factor of 2

by comparing the relative intensities of the corresponding fluorescent

radiations in the Martian dayglow as reported by Barth et al. (ref. 3).

The g factors for the photodissociation excitation of the NH2A Al X l B

and the NH A3 -3 X Z and c'T t a'?A band systems are estimated from the

fluorescent yield data of Okabe and Lenzi (ref. 35) and Cook and Ching

(ref. 14); the absorption data of Nicolet (ref. 18) and the solar flux

data cited above. The g factors for the production of hydrogen Ly-a at
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1216k by photodissociation and of the N2 A - X and B -* X band systems are

listed by Hunten (ref. 31). The g factor for the resonance scattering of

584k sunlight by helium was deduced within a factor of 2 from 584k dayglow

measurements reported by Donahue and Kumer (ref. 36). The g factor for

resonance scattering of 537k sunlight by helium was obtained by adjusting

the corresponding g factor of 584A for the reduced solar flux at 537A

and for the smaller oscillator strength of the radiative transition

associated with 537A helium line.
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APPENDIX C

Fluorescence Spectrum of CF4

The fluorescence excited when CF4 is irradiated by uv radiation

of wavelength between 870 and 930A was observed by Cook and Ching (ref. 1)

to lie at wavelengths less than 3000A. In the present work, the

uv excited fluorescence was spectrally resolved. In addition, CF4

was excited by electron impact and the resulting emission spectrum

was observed with better spectral resolution to determine the ori-

gin of the fluorescence by observing its threshold energy. In

particular, three types of measurement were made:

a) The fluorescence of CF
4

excited by uv at 919A was de-

tected and, by use of filters, found to lie between 1600 and 3200A.

b) This fluorescence was also spectrally analyzed with a

monochromator of 150A resolution and appears to be a continuum lying

between 2100 and 3150A.

c) The emission spectrum arising from electron impact of CF4

was analyzed with 80 resolution and for electron energies from 13 to

22 eV this spectrum was a continuum similar to that excited by uv.

d) The short wavelength limits of the emission continuua ex-

cited by 919. photons and 13 to 22 eV electrons were 2100A and 1850A

respectively. Analysis suggests the final state resulting from

these excitations of CF4 is the CF3 radical and a fluorine atom.
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APPARATUS

Two experimental arrangements are described, one for the

fluorescence experiment and another for the electron excitation

experiment.

The fluorescence experiment apparatus schematic is shown in

Fig. 50. The light source is a Hinteregger type (McPherson Model

630) DC capillary discharge operated windowless with argon flow-

ing from the lamp through the monochromator entrance slit. This

source provides sufficient intensity of the AII 919.8A line to

excite the fluorescence of CF4 . The 1 meter McPherson Model 225

normal incidence concave grating monochromator is used with wide

(1 mm) entrance and exit slits to maximize throughput of the 919A

line radiation. A McPherson Model 665 dual beam attachment

mounted behind the exit slit of the 1 m monochromator serves as

the absorption and fluorescence chamber. An oscillating mirror

in this device alternately reflects the light emerging from the

exit slit to either side of the chamber at 6.6 cps. The beam of

919A photons is monitored by a photomultiplier tube (A, Fig. 50)

preceded by a window coated with sodium salicylate. The fluo-

rescence is detected by an EMI 6256S low noise phototube (B,

Fig. 50) mounted behind the exit slit of the 40 cm f/10 mono-

chromator.
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A quartz window directly ahead of the sodium salicylate coated

window of phototube B rejects any 919A radiation scattered by the

grating of the 40 cm monochromator, since the primary beam of 919A

falls upon this grating. This geometry was chosen to allow obser-

vation of fluorescence produced along the entire path of the 919A

radiation through the gas in the scattering chamber. Because the

collection efficiency for fluorescent photons varies along the

path, quantitative estimation of fluorescent signal strength is

difficult. The output of phototube B is detected as pulse counts

by a multichannel analyzer. Two modes of data accumulation are

employed. For spectral scans, the 40 cm monochromator is scanned

slowly through the appropriate wavelength range and phototube

pulses are accumulated in successive channels of the multichannel

analyzer. Synchronization of channel advance with spectral scan

rate of the monochromator produces a histogram type record of the

fluorescent spectrum. In addition to the spectral scans, some

data are taken by setting the 40 cm monochromator at a particular

wavelength and integrating the fluorescent photon counts over a

period of time. In this mode of operation the beam splitting

mirror oscillates at 6.6 cps, thus chopping the signal, and the

multichannel analyzer is synchronized with the chopper so that one

group of channels collects only phototube noise counts and another

group collects both signal and noise counts. The difference is

the signal. This type of phase locked detection insures uniform

9o



sampling of the phototube noise output and allows the detection

of signals as small as a few percent of the noise. With the light

fluxes and geometry available, such measures were essential to

detection of spectrally resolved fluorescence.

Broadband detector observations were obtained using a modi-

fication of apparatus shown in Fig. 50 with the beam splitting

device used as the scattering chnmber. Phototube A was used as

the fluorescence detector and the direct beam of 919A radiation

to it was blocked by a baffle so that only the freon on the left

side of the scattering chamber was illuminated. A filter wheel

in front of phototube A carried LiF, quartz and glass windows

which could be positioned in front of the sodium salicylate win-

dow ahead of the phototube, thus providing broadband wavelength

selectivity. The quartz window transmits at wavelengths longer

than about 1600A and the glass window transmits at wavelengths

longer than about 3100A although its transmission at 2940 is

10%.

Thne electron impact excitation of CF4 employs the 1 m

monochromator. The light source (Fig. 50) is replaced by an

electron gun and gas target chamber and signals are received by

phototube A. In some cases, instead of processing the signals

with the multichannel analyzer, DC currents can be measured,

because signal to noise ratios are much higher than for the
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fluorescence experiment. The electron impact excitation chamber

is a cylinder about 5 cm in diameter and 7 cm long mounted ahead

of the entrance slit of the 1 m monochromator. The cathode is a

thoriated iridium filament behind two grids, adapted from a Varian

ion gauge. Electrons are collected by a cylindrical electrode at

ground potential. This arrangement is suitable for crude energy

resolution experiments (- 1 volt). Its principal virtue is its

capability for high current operation, though results must be used

with care since the electrons are not focused and secondaries are

not suppressed. Resolution of the apparatus was established by

measuring the onset energy of the N2 + 3914A band. The instrumental

correction was found to be the difference between the observed

value of 19.6 eV and the known value of 18.75 eV for onset of the

(0,0) band.

Absolute sensitivity information for the nonochromator

used in this experiment is not available. The relative spectral

sensitivity of the combination of the 40 cm monochromator and

phototube B was observed to be flat to within 20t from 2000 to 3200A,

by comparison of its sensitivity with that of phototube A using the

dual beam apparatus shown in Fig. 50. The relative spectral sensi-

tivity of the combination of the 1 m monochromator and phototube A

was found to be flat from 2100 to 2400A and to fall off gradually

at longer wavelengths, so that the sensitivity at 2700A is 70% of
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that at 2400A. This was determined by measurement of relative

intensities of CO+ 1st negative bands and NO y bands excited by

electron impact, using band strength data computed from Franck

Condon factors (refs.37,38). The photo tubes were, as always, preceded by

sodium salicylate coated windows.

EXPERIDENTAL OBSERVATIONS

The fluorescence of freon (CF4 ) was observed in several

different ways in the experiments reported here. WU-excited

fluorescence was observed with a broadband detector, and with a

monochromator providing modest spectral resolution. Electron

impact induced fluorescence was observed with better spectral

resolution. Our broadband fluorescence observations confirmed,

in part, the results of Cook and Ching (ref. 1).

The results' of a preliminary broadband experiment showed

that most of the fluorescence of CF4 excited by 919A radiation

was of wavelength longer than 1600A and shorter than 3000A,

since the quartz filter transmitted it but the glass filter

blocked most of it. Further spectral details were determined

with the monochromator.

Spectrally resolved fluorescence of CF
4

was obtained with

the experimental arrangement of Fig. 50 described above. Be-

cause fluorescence signals were very weak, it was necessary to
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extract the signal from the phototube dark noise. Entrance and

exit slits of the 40 cm monochromator were opened to 3 mm, yield-

ing wavelength resolution of about 150A. That is, a monochromatic

spectral line would appear as a triangular feature with 150A full

width at half maximum intensity. With the light source running

steadily and the 919A line of argon entering the scattering

chamber where a pressure of 0.025 torr of CF4 was maintained by

flowing in fresh gas to replace that pumped out through the

monochromator slits, the 40 cm monochromator was scanned at 1A per

sec from 1500 to 3500A. Pulses from phototube B were fed into the

multiscaler and counted in 200 successive channels for 10 sec per

channel. Each scan thus required 2000 sec, and 18 such scans were

summed channel by channel by the multiscaler. Precautions were

taken to insure synchronization of starting times of monochromator

and multiscaler scans so the wavelength error of the scans was

much less than the channel width of lOA. Readouts of the spec-

trum were obtained after even numbered scans to allow checks of

consistency, described below. The data for all scans were processed

by adding together groups of 5 channels (50A) and plotting the aver-

age of successive pairs of 5 channel groups. The result is dis-

played in Fig. 51a.

Similar analyses of the data taken in the scans 1-10 and

11-18 were plotted separately and confirmed the reproducibility
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of the large scale structure in the spectrum at wavelengths longer

than 2100A, but indicated that features below 2100A are not repro-

ducible. The ordinate of Fig. 51a gives the number of signal

counts in 5 channels for 18 scans. The standard deviation of the

signal is estimated to be 100 counts/900 sec. The smaller oscilla-

tions in the curve plotted in Fig. 51a are within this range and

therefore not significant. What is significant is the rise in sig-

nal at 2100A, the dips at 2600A and 3150A, and the continuing rise

in signal beyond 3200A. Tests of fluorescent signal counting rate

without CF4 gas show that the spectrum depicted in Fig. 51a is

attributable to CF4 except for the gradual rise at wavelengths

longer than 3100A which is probably a result of scintillation of

oils deposited on the beam switching mirror or other surfaces seen

by the monochromator. The dashed line extending under the spectrum

in Fig. 51a from the right is an estimate of the background radia-

tion which should be subtracted from the signals shown. The true

CF4 fluorescence spectrum seems to be confined to the broad feat-

ures between 2100 and 3150A.

A number of electron impact spectra of CF4 were observed at

various electron energies. The spectrum in Fig. 51b was produced

with 20 eV electrons. It appears continuous, rising from about

1900A and extending to longer wavelengths. Again, because of

fluctuations in noise, the smaller oscillations are not repeatable.
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For the scan shown, the entrance and exit slits of the 1 m

monochromator were set at 2 mm giving spectral resolution of 341.

More detailed scans of parts of this spectrum with narrower slits

failed to show any line or band structure.

The relative excitation cross section curve in Fig. 52 shows

the light emitted by CF
4

at 2350A (in a bandwidth of 34A) for

electron energies between 10 and 45 eV, normalized for variation

of electron current with energy. The accuracy of this curve is

poorest at low energies where signals are weak, but it tends to

show that the electron induced fluorescence of CF4 sets on below

14 eV and rises gradually to about 22 eV where a sharply rising

component starts. From this curve one sees that an electron en-

ergy of 20 eV is sufficient to excite the fluorescence but is be-

low that energy at which another process seems to begin. The

CF4 spectrum excited with 20 eV electrons (Fig. 51b) thus should

correspond to that excited by 919A photons (Fig. 51b).

A number of detailed scans of the electron impact spectrum

between 1600 and 2100A were made at electron energies of as Iow

as 14 eV to determine the short wavelength limit of the contin-

uous spectrum. This was found to lie at 1850 ± 10A and the im-

plications of this are discussed below.

A spectral scan of fluorescence of CF4 produced by 60 eV

electrons was made and has a different shape than
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that at 20 eV. This scan was made with spectral resolution of 17A

and shows two continua; one near 1600A and another at longer wave-

lengths. This result is much like that of Hesser and DressIer (ref. 39),

who observed the same continua with 200 volt electrons. The onset

of the 1600A continuum was observed to occur at about 22 eV. The

spectrum excited by 60 eV electrons also shows the CI 1930.93A

line. Figure53 gives the excitation efficiency of this line as a

function of electron energy. The onset occurs at 27.8 ± 1 eV.

Table 6 summarizes the observations of continua excited by photon

or electron excitation of CF4 .

ENERGETICS OF CF4 FLUORESCENCE

Conclusions about the identity of radiating species can be

drawn from the data on spectral distribution of radiation from

CF4 excited by uv photons or electrons. The electron impact

excited spectrum of Figure 51bhas a short wavelength limit at

1850 ± 10A(6.7 eV). This was excited with 20 eV electrons. Similar

spectra were excited with electrons of energy as low as 14 eV.

Although these are not reproduced here, they all show the continuum

with short wavelength limit at 1850A. Thus, 14 eV electrons excite

a state which yields photons of energy as high as 6.7 eV leading to

a final state at 7.3 eV.
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This result is also obtained by considering the fluorescent

spectrum, Fig.51a which has a short wavelength limit at about

2100A. This was excited with 919k photons (13.5 eV). Subtract-

ing 5.9 eV (2100A) yields 7.6 eV as the energy of the final state,

in agreement with that found from the electron impact spectra.

This state could be a state of the CF4 molecule, but the diffuse

absorption and emission suggest that dissociation is involved.

The energies of the ground states of a number of dissociation pro-

ducts were computed from heat of formation data summarized in

Table 7. Based on these data, the energies required to dissociate

CF4 to a radical and some number of fluorine atoms or molecules

are summarized in Table 8. The first entry can be verified by

considering the excitation function for the CI 1930 line, shown

in Fig. 53. Subtracting the energy of the upper state of the line

(7.68 eV) from the observed threshold of excitation (27.8 ± 0.1 eV)

yields 20.1 eV as computed from the heat of formation data.

Since the final state after emission of a fluorescent photon

in the continuum lies as low as 7.3 eV above the ground state of

CF4 the existence of CF3 or CF as a product is ruled out. This

leaves CF3 + F as the most likely dissociation product, among the

possibilities suggested in Table 8.
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Table 6

Continua Excited in CF
4

Excitation Process

Photon 919.78A

(13-5 eV)

Electrons

Short Wavelength Limit of Continuum

2100A (5.9 eV)

> 13.2 eV*

> 22 eV

1850A (6.7 eV)

1540A (8.05 eV)

2020A (6.13 eV)

* Our observations of this continuum were made at electron energies
> 14 eV. The lower limit is inferred from Cook and Ching's(ref. 1)
optical absorption data.
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Table 7

Thermochemical Data

Heat of Formation (ref. 40)

CF4

CF3

CF2

CF

C (gaseous state)

F

-220.5 kcal/mol

-115

-30 ± 10

+74.4

+172

+18.88

Table 8

Computed Dissociation Energies

Filial State

C

CF

CF

CF2

CF2

CF3

Dissociation Energy

+ 4F

+ 3F

+ F2 + F

+ 2F

+ F2

+ F

20.1 eV

> 10 eV

> 10 eV

9.8 eV

8.2 eV

6.o6 eV

Molecule
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